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ABSTRACT 

The integral  method is applied to obtain a general  analysis  of the 

three-dimensional, compressible ,  laminar  boundary layer with mass in- 

jection. 

a te  sys tem and profile pa rame te r s  a r e  introduced for the s t reamwise  

velocity, the total  enthalpy and the secondary-flow velocity profiles. A s  

a n  i l lustration, the present  formulation is applied to three-dimensional 

flow in the forebody region of a blunt body. The effects of m a s s  injection 

and s t reamline curvature ,  including the effect of a n  inflection point in the 

outer inviscid s t reamline,  are analyzed. The nonsimilar nature of the 

three -dimensional boundary- la ye r flow is observed. 

The equations are  expressed in t e r m s  of the s t reaml ine  coordin- 
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I. INTRODUCTION 

Analysis of three-dimensional boundary-layer flows has been the 

subject of increasing in t e re s t  because of its application to lifting vehicles 

entering the a tmosphere  with hypersonic speeds. 

able,  fo r  example, by Cooke and Hall', Mager', Moore3, and Rosenhead4. 

Review a r t i c l e s  a r e  ava i l  - 

Many analyses on three  -dimensional boundary-layer flows have been 

performed for  special  geometr ies ,  where simplifications in the governing 

equations a r e  possible, such as yawed infinite  cylinder^^-^ and flat  plates 

Numerous analyses a re  a l s o  available fo r  other special  ca ses ,  as, for example, 

a blunt-nosed cold body 

velocity component is assumed to be sma l l  compared with the s t reamwise 

velocity 

8-11 

12 , and flows where the secondary-flow ( t ransverse)  

23-26 . Flows in the stagnation region have a l so  been analyzed 13-22 

The complexity of the equations for  three-dimensional,  compressible  

boundary-layer flows makes it difficult to obtain general ,  analytic solutions. 

The present  analysis t r ea t s  the full three-dimentional boundary-layer equa- 

tions, including mass injection a t  the body surface,  by employing the integral  

method. Although the method is approximate, involving assumption of the 

profile forms  for velocity and temperature ,  i t  nevertheless yields satisfactory 

nons imila r s olutions fo r  the boundary- la ye r flow. 

s imilar i ty  or  local s imilar i ty  of the flow charac te r i s t ics  o r  the magnitude 

of the secondary-flow velocity component a r e  not introduced in  the present  

analysis.  F o r  simplicity, however, the ideal-gas equation of s ta te  i s  

assumed.  

A s sumptions c once rning 

The basic integral  equations are derived in  Section 11-A. In Section 

11-B, the choice of profiles is discussed and in Section 11-C, the final formu-  

lation of the integral  

special  ca ses  and comparison with previous resu l t s .  

solutions a r e  obtained for  flows on an Apollo-type blunt body and a discus-  

sion of the resu l t s  is presented. 

dimensional boundary layers  a r e  discussed in detail.  

equations is made, along with application to seve ra l  

In Section 11-D, sample 

The effects of mass injection on three  - 

1 



11. ANALYSIS 

11-A Basic Equations 

The curvi l inear  coordinate sys tem used i n  the present  analysis is 

shown in  Fig. 1. The &-coordinate coincides with the local  external  inviscid 

s t reamline projected on the plane tangent to  the body surface.  

y-coordinate is a l so  in  the tangent plane and is no rma l  to 4, and ?-coordinate 

is in the direction no rma l  to  the tangent plane. 

the inviscid flow i s  irrotational,  the y-constant l ines then become the potential- 

The 

In the special  c a s e  where 

flow lines. The corresponding velocities are  u,e a n d u .  The line element 

i s  given by 

For  the case  of a nonreacting gas ,  the equations for  a compressible ,  
1, 2, 27 three-dimensional boundary layer  a r e  

Continuity 

4 -momentum 

7- momentum 

3- momentum 

Energy 

2 



where 

Applying Eqs. ( 3 )  and (4) at the outer edge of the boundary layer ,  and tak- 

ing Eq. (5) into account, one obtains 

Pe &e Jut- - - -- J *  

e ,  e, 3% 

Substitution of Eq. (9) in Eqs. ( 3 )  and (4) yields 

3 



Equations ( 6 ) ,  ( I O ) ,  and (11) a r e  now integrated f rom ? =  0 t o  3:s 

and, combined with the continuity Eq. (Z), become 

and 

4 



where 

It should be noted he re  that the momentum boundary-layer thickness ( 8 ) 

is  taken to be the s a m e  f o r  both the s t reamwise  and the secondary flows. 

This seems to be a reasonable s tep  to  take, based on comparisons with the 

exact solutions obtained by Hansen, et a1 2 8 - 3 2 ,  and other solutions obtained, 
for  example, by CookeI7, Beckwith19, and Kang, Rae, and Dunn 1 6  . 
Fur the r ,  the thermal  boundary-layer thickness is assumed to be the same 

as the momentum boundary-layer thickness which is consistent with the 

assumption of others  such as P ~ o t s ~ ~  and Libby and Pallone 

pbub signifies the mass-injection flux at the body surface.  

is  equal to zero,  i e . ,  the solid-wall case, Eqs. ( I Z ) ,  (13), and (14) reduce 

to  the equations obtained in Refs. 1 and 2. 

34 
, The t e r m  

When this t e r m  

The 3 -coordinate is now transformed by introducing the 

Dor odnitzyn variable 

f r o m  which follows the boundary-layer thickness in the t ransformed plane 

5 



35 
In addition, the viscosity t e r m  is assumed to va ry  with temperature  , as 

follows 

where the subscript  o denotes reference conditions and the coefficient 

is taken such that the Sutherland viscosity-temperature relation is exactly 

satisfied at the wall temperature  Tb. Thus, 

where is the Sutherland constant. 

In order  to make the formulation as general  as possible, the equations 

a r e  nondimensionalized with respect  to a reference condition. 

reference point is, for  example, the point immediately behind the shock on 

the stagnation streamline.  Thus, we introduce 

A suitable 

a nd 

p,K e A W = N  

po M o l  

A* 
Re = 

D, = K,Q 

t 
1 =  a 

6 



where t e r m s  with bars  signify normalization with respec t  to the reference 

condition, e. g . ,  pe = etc. In addition, the t e r m  E, will be introduced 

i s  the metr ic  coefficient a t  some convenient point a s  t ! Z r = 7  where e z r  

in the flow and i s  a constant. Then Eqs. (12), (13), and (14) become, a f te r  

s orne rearrangements ,  

- 
e, 

2 r  

and 

7 



It may be noted he re  that the integral  equations,  Eqs. (21) ,  (22), and (23), 

have the following properties.  

i. They can accommodate mass  injections a t  the body surface.  

The term W contains the m a s s  injection flux and appears  

in Eqs. (21)  and (23). 

They can  be used for both laminar and turbulent boundary-layer 

flows. In the case  of a turbulent flow, some suitable correlat ions 

may be used f o r  the reference tempera ture ,  (*) , ($b and (elb to obtain the solutions. (See, for  example, Refs. 36-41). 

The integral  equations yield integrated effects of the flow charac te r -  

ii. 

a7 b 

is t ics  f rom a n  ups t ream location to a point of interest  in the flow field. 

obtaining meaningful solutions, however, it is a l so  important to account for  

local effects such a~ mass injection at the body surface and local p re s su re  

gradients tangent and t r ansve r se  to the streamline.  

the so-called "compatibility conditions'' at the wall  are introduced, by 

specializing the differential equations (6), ( I O ) ,  and (11) to the body surface.  
Thus, we obtain, in dimensionless forms,  

In 

F o r  this la t te r  purpose, 

8 



where 

For the region near  the stagnation point in hypersonic flows, KC/ / - / ,  

is much sma l l e r  than unity and, thus, the last t e r m  in Eq. (24c) may be 

neglected without loss in accuracy,  although the Prandt l  number may not 

be unity. In the c a s e  where the Prandt l  number is unity, of course ,  the 

t e r m  is identically zero,  In obtaining the examples included in this  report ,  

the t e r m  containing U i / H ,  is neglected in  order  to  save computation time. 

However, if necessary ,  this t e r m  may be left in the equation and the formu- 

lation will follow the same  procedure.  Thus, we have 

We now have derived s-x equations, viz. ,  Eqs. (21),  (22), (23), (2,a), 

(24b), and (26). Thus, six unknown parameters  describing the flow cha r -  

ac te r i s t ics  may be introduced and, theoretically, the problem is determinate.  

It is the manner of choosing these pa rame te r s  that forebodes success  o r  

failure in obtaining meaningful solutions fo r  the flow-field charac te r i s t ics  by 

application of the integral  method. 

that have been applied in the past  will be reviewed and the choice of profiles 

for  the present  analysis will be discussed. 

In the following section, s eve ra l  techniques 

9 



11-B Choice of Prof i les  

Application of the integral  method to the boundary-layer flow involves 

assuming forms of the velocity and total enthalpy profiles in t e r m s  of par -  

a m e t e r s  which charac te r ize  the fluid motion, 

in two-dimensional and axisymmetr ic  cases  are  due to Pohlhausen 

The commonly used techniques 
13, 22, 34, 42-46 

9 

, and Head 54-55. In the 50 51-53 , Timman , Dorodnitzyn 47-49 T hwa ite s 

Pohlhausen technique, the profiles a r e  assumed in  polynomial forms ,  and 

parameters  are expressed by satisfying the boundary conditions at the body 

and a t  the outer edge of the boundary layer. These parameters  a r e  then ob- 

tained by solving the integral  equations. This approach has  been used most  

extensively because of its grea t  simplicity in application. In Timman's  ap-  

proach,the profiles a r e  expressed in t e r m s  of the e r r o r  function and a l l  de- 

rivatives of these profiles asymptotically approach ze ro  at the outer edge of 

the boundary layer and,thus, the boundary conditions there  a r e  identically 

satisfied. 

strips, and in each s t r i p  the polynomial distribution is assumed. 

approach is a n  extended vers ion of the Pohlhausen method. 

to  Head introduces doubly-infinite family of profiles based on exact solutions 

The Dorodnitzyn scheme involves dividing the boundary layer into 

Thus, this 

The method due 

and, by satisfying the compatibility condition and the integral  equation, solu- 

tions a r e  obtained, 

the variations of the assumed parameters  f rom similar solutions, thereby 

obtaining a simple quadrature for  the solution. 

Lastly, the Thwaite's approach is based on determining 

With some simplifying assumptions, such as incompressible flow, no 

m a s s  injection, or  small secondary-flow velocity, these approaches have 

been extended to the three-dimensional ca ses  (see, for example, Refs. 1, 13, 

15, 17, 18, 20, 22,40,44, 56-61). 

pecially f rom Refs. 1 and 58, that when the flow is expressed in the streamline 

coordinate system, the s t reamwise flow behaves like a two-dimensional 

boundary layer ,  even when the other component, i. e . ,  the secondary (or  

t ransverse)  flow, is appreciable. This is a n  important resul t ,  since it sug- 

gests  the application of the technique used in the two-dimensional ca se  to the 

s t reamwise flow in three-dimensional flow with rea  sonable confidence. 

It has been found f rom these analyses,  e s -  

It 

10 



a l s o  suggests that interpretations of the results f r o m  the two-dimensional 

flow analyses  may  be applicable in a qualitative way to the s t reamwise  flow 

i n  the three-dimensional case.  

various methods may be inferred for  the three-dimensional c a s e  f rom their  

relative values and accurac ies  when applied in the two-dimensional case. 

By comparison of these methods, i t  was found that their  relative accuracies  

var ied significantly for  the adverse  p re s su re  gradient cases .  

when the p r e s s u r e  gradient was I'favorablel', that  is, when the flow was a c -  

celerating, all of these methods showed remarkably similar resul ts .  Of 

course ,  the m o r e  elaborate (and thus more  laborious) yielded slightly more  

accura te  resu l t s .  On the whole, however, one of the s impler  methods, i. e . ,  

the Pohlhausen polynomial method, gave very reasonable resu l t s  in two- 

dimen s ional flows 34' 35 '  45' 49, even in  the c a s e  of m a s s  injection a t  the body 

surface 

plicity in application, resultant saving in labor (computation t ime),  and 

reasonable resul ts ,  i t  was decided to apply the Pohlhausen polynomial method 

to  the streamwise-flow velocity profile and to  the total-enthalpy profile. 

F o r  the secondary-flow velocity profile, however, it was anticipated that 

there  would be, in general ,  an inflection point in the s t reamline which brings 

about r e v e r s a l  of the flow direction of the secondary-flow velocity component. 

In o rde r  to accommodate this, and in o rde r  to give m o r e  accurate  profile 

approach (sub- distribution for  the secondary-flow velocity, T imman 's  

sequently refined by Z a a t i 5  and Cookei8) is extended he re  for  the compres-  

sible case  with o r  without mass injection. 

the analysis of Ref. 16 for  the special  c a s e  of small secondary flow. In the 

following, the profiles will be determined in t e r m s  of the parameters  which 

desc ribe the boundary-layer flow character is t ic  s. 

In particular,  the relative merits of these 

However, 

. Thus, because of its overal l  advantages, such as  sim- 43, 46, 62 

63 - 64 

Comparison i s  a l so  made with 

The Streamwise Velocity Profile 

We introduce the fourth-degree polynomial f o r m  
4 

11 



The boundary conditions a r e  

q = O ;  u =  0 

q = l ;  u = /  

In addition, we have the compatibility condition at the wall, i. e . ,  Eq. (24a). 

Substitution of Eq. (27) in  Eqs. (24a) and (28) gives 

a, = 0 

W a ,  - P 
2 

a, = 

rz4 = - 3 - -  2 4 2 + + )  

Therefore,  we have 

u = m,(q) + A  -nZ l (@ 

where 

12 



The functions x ( ,  and 9, a r e  plotted in Fig. 2 and U ( 7 )  in Fig. 3 .  

Thus, the s t reamwise velocity is expressed as a function of only one pa r -  

ame te r ,  A .  The physical significance of A is that it expresses the 

magnitude of the velocity gradient at the body surface and,therefore,is a 

measure  of the s t reamwise  shear  stress. 

when there  is no mass injection at the wall, W = 0, then A is dependent 

only on P , the pressure-gradient  parameter .  On the other hand, i f  the 

mass injection is ve ry  great ,  the other limiting case is obtained, i. e . ,  

A+ 0, as W+oo.  In other words, as mass injection increases, the 

s t reamwise skin friction decreases  and in the limit approaches zero,  a phy- 

sically reasonable resul t .  

no s t reamwise p re s su re  gradient, i. e . ,  P 2 0, A = . 
tion, W = 0, that is, solid wall, we have the resul t ,  A = 2,  and the velocity 

profile for  this c a s e  a g r e e s  with the Blasius profile. 

that regardless  of the value of W, A = 0 for 

ation of the flow due to adverse  p re s su re  gradient. 

numerical  comparison of the value of 

for the more  general  ca se  of finite p re s su re  gradient and mass injection. 

It is interesting to note he re  that 

Another interesting resu l t  is that when there  is 

If in addi- 12 

It may a l s o  be seen 

f = -12 ,  signifying the separ -  

Later in Section 11-D, 

A will be made with other resul ts  

We have thus expressed the s t r eamwise  velocity profile in t e r m s  of 

one parameter ,  which combines the pressure-gradient  character is t ic  and the 

mass-injection charac te r i s t ics  in the flow. 

again that, based on previous analyses,  the above one-parameter  expression 

is expected to yield reasonable results.  

pressure-gradient  case ,  although Poots seems to have obtained good r e -  

sults f rom the application of the fourth-order polynomials for the profiles. 

It should be noted he re  once 

Caution is advised in the adverse 
33  

The Total-Enthalpy Profile 

Here, we introduce the fifth-degree polynomial f o r m  such that 

The reason for  taking this particular fo rm is discussed later. 

13 



The boundary conditions a re  

q = o  ; e = e, 

= O  a"e - 
a 1" 

The compatibility condition for  the total  enthalpy is given in Eq. (26). 
We thus obtain 

bo = 8, 

b ,  = 8 

where 

b, = t o  (I  - bo) - (6 + $ Wp) b, 

w+ = w 
and Eq. (32)  becomes 

(33) 

(34) 

14 



where 

The distributions of these functions along 1 
In cont ras t  to  the s t reamwise  flow case ,  where the fourth-degree polynomial 

f o r m  is used, the total-enthalpy profile he re  is expressed  in fifth-degree 

polynomial form.  

used, all 

problem is reduced to obtaining the solutions to  the s t reamwise-momentum 

integral  equation. Once the solutions a r e  obtained f o r  A ,  W, P f rom the 

equation, then, i t  is  a simple mat te r  t o  construct the total-enthalpy c h a r -  

acterist ics,  and the energy equation, i. e. , the total-enthalpy integral  equation, 
48 is ignored. This procedure has  been used by Cohen and Reshotko 

Thwaite's approach and the resu l t s  show, in  some cases ,  poor accuracy in 

the energy field while yielding the velocity field accurately.  

Tani65 and Poots 

They then drop  the compatibility condition, but in its place use the "kinetic- 

energy" integral  equation and obtain good results. Physically, the energy 

equation and the compatibility condition serve  two functions; the energy in- 

t eg ra l  equation descr ibes  the integrated effects of the energy of the flow 

f r o m  ups t ream to the point of interest  along the s t reamline,  while the com-  

patibility condition descr ibes  the local flow effects. 

that  meaningful resu l t s  may be obtained by considering both equations. 

procedure has, i n  fact,been followed in two-dimensional c a s e s  34'49. In the 

present  analysis,  therefore,  both the energy integral  equation and the com- 

patibility conditions are  retained and considered by assuming a fifth-order 

polynomial f o r m  for  the total-enthalpy profile. 

that the resu l t s  for  the energy field can  be interpreted only in conjunction with 

a r e  shown in Figs.  4-6. 

The reason  is as follows: i f  only fourth-degree fo rm were  

and,thus,the bm's can  be determined in terms of W, P, e,, and A 

using 

Others (such a s  
33 ) u s e  the energy equation and the fourth-degree form. 

It is thus recognized 

This 

It should be noted, however, 

15 



the s t reamwise momentum results, as well  as the secondary-flow momentum 

resu l t s  . 
The Secondary-Flow Velocity Profile 

In the present  analysis,  we assume a modified f o r m  of Timman’s  

profile, such that 

where 
-LL=q+ 

= a 7 e 

Figure 7 shows the distributions of & and 2 along 7 .  The 

profiles of V(q) for various values of G and F a r e  plotted in Figs.  

8-10. The terms G and F are two f r e e  parameters  which will be de-  

termined f rom the integral  equations and the compatibility conditions. 

fact, the compatibility condition can be used a t  this juncture to  eliminate one 

parameter ,  thus leaving the integral  equation to solve for  the remaining par -  

In 

ameter  along the streamline.  

Substitution of Eq .  ( 3 7 )  in  Eq. (24b) yields 
2 

W (U G + F )  = - 9  - a  F 

Thus, 

Since the wall-shear for  the secondary flow is 

use of Eq. (40) g’ we s 
( q ) b = a G + F  

Thus, the profile becomes, f r o m  Eq. (40), 

( 3 9  

(4 0 
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where 

It should be noted that presence of a n  inflection point along the 

s t reamline may cause the secondary-f low velocity profile to be S-shaped 

(or  "cross-over"  profile) near  the inflection point. 

real is t ic  velocity distributions, i t  i s  necessary  for the profile to exhibit the 

S-shaped form,  as well  a s  the C-shaped form.  

fied by the profile fo rm assumed in  Eq. (37) o r  Eq. (42), and the problem 

now i s  to determine f rom the integral  equations the values of these par -  

ame te r s ,  i . e . ,  G. and F , along the streamline.  

Thus, in order  to obtain 

This requirement is sa t i s -  

With the chosen profile forms,  i t  i s  now possible to calculate various 

charac te r i s t ic  ' lthicknesses' '  f rom these profiles in t e r m s  of parameters  A ,  

B ,  6 ,  etc. 

F r o m  Eqs. (15) and (20) , we have 

MI, i ' V ( l - U ) d 7  = l ? + e 4 - e A L  

M,, = i(J V d i  = G(c + A c + W , e  +AW, P,) + 9 ,  (e tAP , )  

M, V d ?  = G(< +W,4)+QlQ 

I 

0 
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and 

(44) 

where the ideal-gas relationship 

- -  e u l = 3 ( & u z )  
P 4 

has been used. The coefficients, i. e. , P i r  , are  included in the Appendix. 

II-C Integral Equations 

Substitution of the profiles chosen in Sec. II-B into the integral  equa- 

tions (21), ( 2 2 ) ,  and ( 2 3 )  yields 

18 



where w 

and 5,  a r e  replaced by # and , respectively. The term Jb 

takes on a physical meaning of stream function while can, in the c a s e  

of irrotational outer flow, signify the velocity potential. Since the compat- 

ibility conditions have a l ready  been incorporated in  Sec. 11-B, they are not 

writ ten here .  Thus, there  are  three integral  equations, and the parameters  

to  be determined f rom these equations are  fL ,G 
is mathematically determinate.  

i t  is instructive to consider some special  ca ses  for which analyses a r e  

a vai la ble . 

r 
4 

and 8 and the problem 

Before discussing the method of solution, 

CASE 1. Incompressible, No Mass Injection, Small  Secondary Flow 
18 

This case  has  been analyzed previously by Cooke . Under the condi- 

tions specified above, the present  formulation, i. e . ,  Eqs. (21)  and (22), 

reduces to his equations 

spective t e rms .  

by establishing the equivalence between the r e -  

The correspondence is as follows 

Cooke's Formulation 

(Cooke's Notations) 

d 

2t-A 

n 

M 

Presen t  Formulation (when 
specialized to Cooke's conditions) 

A 

G 



11 
Cooke compares  his r e su l t s  with the exact solutions of Hansen and Herzig 

and obtains good agreement .  

Cooke's formulation when specialized to his  conditions, i. e. , 
sible, no mass injection and small secondary flows, the present  formulation 

will yield the same  resu l t s  as  that of Cooke 

s idered the same c a s e  with the assumption that the inviscid outer flow is 

irrotational.  In this ca se ,  the 

e, = u, ( see  Refs. 1, 2) .  The s t reamwise  integral  in  the equation in this 

c a s e  becomes, in the present  notations, 

Since the present  formulation reduces to 

incompres-  

18 . Zaati5 e a r l i e r  had con- 

fi -l ines a r e  potential lines and,furthermore, 
- 1  

and a simple quadrature is obtained for A , which is a measu re  of the 

boundary - la ye r thic kne s s . 
CASE 2 .  Incompressible, No Mass Injection, Axisymmetric Flow 

This is a more  specialized situation of Case 1 in that now there  is no 

secondary flow. In this ca se ,  we may take the azimuth angle in a 

c i rcu lar  section perpendicular to the axis a s  s t r e a m  function. 

for  the line element, 

Then we have, 

where r 
to the body surface.  

corresponds to  the cylindrical  radius f r o m  the axis of symmetry 

Comparison of Eqs. (1) and (49) gives 

e,= r 

Equation (48) then becomes 

66 which is s imi l a r  to Truckenbrodt 's  resu l t  . The term )( signifies the 

distance along a streamline.  

20 



CASE 3. Incompressible,  No Mass  Injection, Two-Dimensional Flow 

In this case, we have, for  the line element, 

which gives, for  potential flow, 

= / 

Hence, Eq. (48) becomes 

(53) 

F r o m  Eqs. (20), (44), and the Appendix, we have 

e,, = A M,, = A (0.1143 t 0.00953A - 0.00397A~). (55) 

The range of in te res t  for  A i s  between 1 and 3, the value 2 c o r r e s -  

ponding to the "Blasius" c a s e  of flat-plate with no mass injection. Within 

this range, a n  average value for  M yields &,,I = & / / 5  Substitution of 

this value in Eq. (54) gives d"9 
I I  

which ag rees  well  with the resul ts  obtained by Tan 

11-D Solutions and Discussion of Results 

65 and Thwa 47 tes . 

We now consider the method of solving the integral  Eqs. (45), (46), 
F r o m  the inviscid flow-field analysis,  the quantities at the outer and (47). 

edge of the boundary layer  are  assumed known, including the s t reamline 

curvature  distribution (D, ) and the s t reamline divergence-convergence 

function ( E ,  ) . With known initial conditions, integration of the equations 

is then c a r r i e d  out along individual external  s t reaml ines  ( 

last t e r m  in each equation is of the f o r m  { f and is not known a priori .  

Thus, this term is dropped a t  first 587 67 and is accounted fo r  a f t e r  solutions 

have been obtained along seve ra l  s t reamlines .  

= constant). The 

It will  be seen  la te r  in  the 
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examples calculated that the saving in computation time, as well as simplicity 

of application,is achieved by this method. 

because only the gradient term is dropped at first, this method does not in- 

volve the assumption of small secondary flow, but ra ther  is a n  i terative 

method of solving the equations. 

It should be remarked  he re  that 

A s  a n  application of the integral  method formulated in Eqs. (45), (46), 

and (47), analysis will be made of a hypersonic flow around a blunt body a t  

angle of attack with mass injection at the body surface assuming irrotational,  

inviscid outer flow and an  ideal gas. 

such a s  the value of the Prandt l  number, will be introduced a s  the analysis 

proceeds. 

Any other conditions o r  assumptions, 

$82 F r o m  the condition of irrotational flow we get 

- I  e ,  = 

and thus 

(57)  

We shal l  now estimate the term dp,/dp , 

we obtain 

Using ideal gas relationship, 

F r o m  Eq. ( 9 ) ,  we have 

z 
= I(, pe u, J-P 

3P 9 

- , we have, for  and from the relationship he = tf, 
H e = constant, 

2 

Combination of Eqs. (59), ( 9 ) ,  and (60) yields the following resul t  

Thus, the t ransverse  gradient of p may be conveniently expressed in 
e 

t e r m s  of K ,  , 
usually much less  than unity and,thus,for air  Eq. (61) is smaller  than K, . 

It is noted that near  the stagnation point the term /B is  

22 



Applying the relationships derived above in  the integral  equations 

(45), (46), and (47), we obtain 

where 

and, a s  discussed previously, the las t  t e r m  in Eqs. (45), (46), and (47)  

has  been dropped and will l a t e r  be accounted for  f r o m  the solutions obtained 

along the s t reamlines .  A new variable X is  introduced such that dX=e,d@/, 
which signifies the length along the streamline.  

ience in calculation, and no approximation is involved in this step68. 

the inviscid outer flow field, distributions of the various terms, such a s  

& a, ce etc. , a r e  considered known. The dependent variables a r e  

This i s  s t r ic t ly  for conven- 

F r o m  
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1. n , f r o m  which A A .) W, M,, can  be calculated, 

2e 4, , which i n  tu rn  depends on G and n , and 

3. T, , which will enable calculation fo r  8 . 
Thus, there  a r e  three essent ia l  unknowns, fl, G , and 8 . Since there  

a r e  three  equations, (62 ) ,  ( 6 3 ) ,  (64), the problem is now, mathematically 

speaking, solvable. Because of the complexity of the equations, numerical  

solution on a digital computer is c a r r i e d  out in  the present  analysis.  Com- 

putation t ime for  a typical case was about one minute on IBM 7044 computer,  

In order  to start the integration, it is necessary  to  know the initial 

values. 

streamline,  the initial conditions at that point a r e  presumed given f rom the 

ups t ream conditions. However, if the integration s t a r t s  f rom the stagnation 

point, the initial conditions can be determined f rom the integral  equations 

themselves. Essentially, this involves dropping the slope t e r m s  for  A T, , 
and M 1, for  the first approximation and then,by numerically differentiating 

If the integration were  to  start f rom a n  a r b i t r a r y  point along the 

these t e rms ,  obtain the second-order approximation, and the i teration i s  

repeated until convergence in these values is achieved. 

included in Refs. 15 and 60. 

the main par t  of the solution is not sensitive to the way in  which the solution 

is  started.  This conclusion was reinforced by Head54 who used, as initial 

conditions, the Blasius velocity profile despite the fact  that  the p re s su re  

gradient a t  the initial point was not zero.  He found that a f te r  a very  short  

distance the solutions approached those obtained using the more  elaborate, 

i terative technique. In the present  analysis,  both the i terative technique and 

a n  approximate technique have been tested for  a specific problem. 

approximate technique, the in i t i a l  values used were obtained by taking a l imit  

of the Eqs. (62 ) ,  ( 6 3 ) ,  and (64) to  the stagnation point. It was found that both 

techniques yielded equally reasonable resu l t s  for  the main par t  of the solu- 

tion along the s t reamline and it was decided to apply the approximate tech - 
nique in obtaining the initial conditions in  the present  analysis because of the 

saving in the computation t ime and simplicity in application. 

Further  details a r e  

It has  been repeatedly found by Cookej8 that 

F o r  the 
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Examples 

The formulation derived in  Eqs. (62), (63), and (64) will  be applied 

to  a flow on a n  Apollo-type blunt body entering the atmosphere.  

the conditions a s sumed  are: 

Altitude: 200, 000 f t  
Velocity ( M ~ ) :  30,000 f t / s e c  (0.915 x 10 6 c m / s e c )  

Body radius  ( 4  ): 15.5 ft (474 c m )  

Angle of attack: 20 degrees  

Specifically, 

Under these conditions, the propert ies  of equilibrium air behind a no rma l  

shock wave a r e ,  69 in c.  g. s. units 

with 

a nd 

whe 

= 16. 81 

= 1099 

= 33 

= 2.49 (105) kyne/cm2] 
= 5.45 (10 4 )Em/sec] 

= 5.27 Lr/cm3] 

= 0.916 ( br /cm-sec)  

= 8.25 (103)pK] 
I 

= 1.44 (105) = p,u,,t/pe 

was used a c r o s s  the normal  s .oc . With these 

property values, the Eqs. (62), (63), and (64) were  integrated along the 

s t reamline f r o m  the stagnation point assuming a n  ideal  gas for  cases  of 
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a rb i t r a r i l y  chosen mass-injection rates, ranging f rom the solid-wall case ,  

( N  = 0), to a uniform 15 per  cent  injection r a t e  ( N  = 0. 15). 

injection fluxes along the s t reamline were a l so  analyzed. 

considered, the wall temperature  was assumed constant at  one-tenth of the 

f r ee - s t r eam stagnation temperature.  

of D, 

Variable mass- 

In all the examples 

The distributions along the s t reamline 

U,, ,Ze, E, , etc. were  assumed expressible  in analytic fo rms ,  e. g., 

This is s t r ic t ly  for convenience, since these distribu- 2 Z e = M m  x-p,x 
tions can  be easily put on the digital computer in tabular forms  o r  in curve-  

fit expressions.  Specifically, the following distribution f o r m s  a r e  assumed, 

in  the present  example, based on a n  inviscid analysis 7 0  : 
- 
&e = 56.5 X -20 X2 

= 1. 0 -exp(-15X) € 2  
D, = 30X (exp(-1OOX 2 ) -  + 

= 1. 022 - 0. 8 XL 

= 10.22 

/ccb = 0.1022 

Ob = o .  10 

These distributions a r e  shown in Fig. 11. The s t reamline curvature  

function D, 
o r d e r  to allow for  the change in the sign of D, 
inflection point, and the above appears  to  be a reasonable, general  form.  

It should be noted in passing that the local radius of streamline curvature 

can  be obtained simply as ,4/., . 

is expressed in the particular fo rm shown in  Eq. (66) in 

D, = 0 denoting the s t reamline 

The resul ts  obtained a r e  shown in  Figs.  12 through 17. Figure 12 

shows the distributions of , the dimensionless "boundary-layer thickness" 

in  the transformed plane, for  various mass-injection ra tes .  

fl increases  with increasing rJ , a physically reasonable resu l t  that has 
16,71 been obtained in  previous analyses 

that fi 
along the streamline.  

containing D, and rz': Because,for increasing injection rates, n in- 

c r e a s e s  and because,in the present  example, D, is comparatively large far 

It i s  noted that 

. 
fo r  large mass-injection rates, at first increases,  then decreases  

This is due mainly to  the second t e r m  in Eq. (62), 

It may a l so  be seen f r o m  Fig. 12 
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downstream f r o m  the stagnation point, this term is seen to  influence the 

magnitudes of the boundary-layer thickness along the streamline.  When 

A = 
ship 8 = r F  d Z  s 

in  the example, the thickening rate of (s is not as grea t  as that of A .  
Thus, this demonstrates  the g rea t e r  sensitivity of to  the flow conditions 

in the t ransformed plane than i n  the actual physical plane, a useful resul t ,  

enabling determination of the effects of various conditions in a n  exaggerated 

manner in the t ransformed pla'ne. 

n, J/fi is t ransformed back into the physical plane by the relation- 

with p, decreasing with x and pb held constant 

CLS, 

Figures  13 and 14 descr ibe the variations of the pressure-gradient  

parameter  (P) and the mass -injection parameter  (W) along the streamline.  

These a r e  combined to yield the s t reamwise wall-shear parameter  (A) f rom 

the relationship A = (12 -t P)/(6 + W). 

opposite influences on the s t reamwise skin friction. The parameter  A can 

It may be seen that P and W exert  

be related t o  the physical s t reamwise wall-shear stress 'Plb by 
A/4 = Yrb p,/pb,ubL(e). Figure 15 shows the effects of various mass-injection 

ra tes  on the s t reamwise wall shear .  Consistent with previous analyses 

the resul ts  show lower values of wall shear  for grea te r  injection rates .  

16,71 
1 

Figure 16 shows the resu l t s  f o r  the heat-transfer distribution along 

the s t reamline f o r  various mass-injection rates .  In particular,  the heat-  

t ransfer  parameter  13 may be related to the conventional heat-transfer 

t e rm,  i. e . ,  Nusselt number, by B/A =Nu& -e,)&,/~~). It shows that the 

heat-transfer rate decreases  for increasing injection r a t e s  and, at uniform 

15 per  cent m a s s  f l u x  a t  the wall, the heat t ransfer  ra te  is practically zero,  

signifying a nearly-insulated condition. 

with increasing mass-injection ra te  i s  g rea t e r  than that of A , so that for  

a cer ta in  value of mass fluxsthe body may be practically insulated, while 

there  is still a finite skin friction. 

vious analysis in  Ref. 16. 

It is noted that the decrease  in  B 

This resu l t  was a l so  obtained in a pre-  

Figure 17 descr ibes  the distribution of the t r ansve r se  wall-shear 

Also shown in the figure is the prescr ibed 

, which goes through zero,  i. e. , 
s t r e s s  along the streamline.  

s t reamline curvature  distribution D, 
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inflection point, at X 0. 076 corresponding to  a distance of 36 cm. f r o m  

the stagnation point in the present  example. is at first 

increasing and then becomes negative, while the wall shear  is negative and 

la te r  becomes positive. This is a reasonable result ,  since it follows f rom 

Eq. (9) that  3, = K,J and the t r ansve r se  p re s su re  gradient * have 

the same sign. 

is in  the direction of lower pressure ,  this means that /v/ and -E?L e,ar possess  

opposite signs. The resu l t s  in Fig. 17 confirm this conclusion. An inter-  

esting resu l t  i s  noted immediately af ter  the inflection point in the figure 

where C (denoting the direction of /zy near  the wall) and 3, (and thus 

*) both have the same signs. 

the flow taken into account in the present analysis,  where the influence of the 

upstream momentum is still present  a t  the inflection point. A f t e r  some d is -  

tance beyond the inflection point,this flow sufficiently adjusts to the change in 

the s t reamline curvature  3, , so  that & and D, again possess  opposite 

signs. This resu l t  was a l so  observed by Cookei8 in  his  approximate analysis 

and by Hansen and Herzig" in their  exact solutions for the incompressible,  

solid-wall case.  

of the inflection point on the flow even in  the case  of mass injection. 

It is seen that D, 

e/ dy 
Since the t ransverse- (or  secondary flow) velocity component 

This signifies the nonsimilarity effect of 
e, Jy 

Thus, the present  analysis descr ibes  the nonsimilar effects 

Another interesting resu l t  is observed in Fig. 17B where increased 

mass-injection r a t e s  bring about decrease  in the distance between the s t r eam-  

line inflection point and the point a t  which the secondary flow reve r ses  its 

direction, so  that the two points virtually coincide for  uniform 15% injection 

rate .  Physically, this signifies that the lower-velocity m a s s  being injected 

into the flow responds more  quickly to the change in  the s t reamline curva-  

t u re  than the outer fluid. 

A s  in  the resu l t s  for  the s t reamwise flow and the total enthalpy, the 

magnitude of the t ransverse  velocity gradient at the wall, i. e . ,  the t rans-  

v e r s e  wall shear ,  decreases  with increasing mass-injection rates .  The 

angle between the inviscid external  s t reamline and the limiting s t reamline 

at the body surface may be determined f r o m  the relationship 
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Figures  15 and 17 show that the absolute magnitude of increases  with 

increasing mass-injection rate ,  a resul t  obtained due to  a slower decrease  

in  e compared to a m o r e  sensit ive change in A with increasing mass 

flux. Thus, the limiting s t reamlines  tend to diverge m o r e  with mass injec- 

tion than without, exhibiting g rea t e r  three-dimensionality of the flow. This 

resu l t  has  a l so  been obtained in a previous analysis16 where small secondary 

flow was assumed. It is to be noted that oc reaches a cer ta in  finite 

value as  mass-injection rate is fur ther  increased, signifying that the s u r -  

face  s t reamline has  a limiting angle with the outer inviscid s t reamline in  

the case  of very large mass-injection rates .  

A and C vary  only slightly as /-d becomes very  large. 

a 

This is due to the fact that both 

Comparisons will now be made with other solutions f o r  A , the 

boundary-layer thickness, and A , the shea r - s t r e s s  parameter  in the 

s t reamwise direction. 

be compared. Using the Howarth-Dorodnitzyn s imilar i ty  transformation , 
i. e . ,  

In particular,  the values at the stagnation point will 
72 

and Eq. (16) , we obtain 

In the stagnation region, we may use approximately 

Hence, Eq. (69) becomes 

F o r  the example used in the present  analysis,  the value of the square-root 

quantity in  Eq. (70) is approximately 2. 80. Now, f r o m  the resu l t s ,  A for 

N = 0 is 1. 20 at the stagnation point, while A 2! 2. 1 for  r\l = 0. 01. 
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On the other hand, the s imi la r i ty  solution obtained in  Ref. 16 gives,  fo r  

6, 
a nd 

(70) 

= 0.1 and 

0" 6.0 for  f, = -0. 5 ( N Y  0.01). 

* =- 2 f  4 3 = 0.5,  q * S  e 3.30 fo r  fb=O ( N = O )  
uo At? ag 

It is thus demonstrated f rom Eq. 
' C  

that  the resu l t s  fo r  A obtained in the present  analysis  are reasonable. 

We s h a l l  now compare  the s t reamwise  wall-shear parameter ,  which 

is  te rmed A 
usually called $, in the s imilar i ty  analyses.  Specifically, we wish to  

determine the actual  s t reamwise  skin friction defined to  be 

in  the present  analysis and its corresponding quantity is 
I /  

?;b = f i b  @./a$b0 
In the present  formulation, l;b is expressible to be 

while s imilar i ty  t ransformation of Howarth-Dorodnitzyn gives, f r o m  Eq. (69) 

Thus, f r o m  Eqs. (71) and (72), the comparison to be made is between A 
and 1, fb , The c a s e  of z e r o  p re s su re  gradient and ze ro  mass injection 
gives P = 0 and fJ = 0, and therefore A is identically 2.0. On the other 

hand, f r o m  similar i ty  analysis,  this c a s e  corresponds to fb  = 0 (no mass 

injection) and ,d = 0 (zero  p re s su re  gradient). F r o m  Ref. 73, we obtain 

* 4 

jt 

'1 ,N 3t Ii y * S 4.20, f, - 0.47, and hence 1, f, - 1. 98, which is close to 2. 0, 1, 
a value fo r  A obtained f r o m  the present  analysis. The mass injection c a s e  

will  now be compared. Specifically, 5% injection rate ,  i. e. , N = 0. 05 
gives, at the stagnation point, A 2 0. 27, while,from similar i ty  analysis, 16 

* N * 2 11.0 and -fb = 0.025,and hence I*$" = 0.275 f o r  /s = 0,5 '1, e b  
and 

present  analysis. 

8, = 0. 1, confirming the reasonableness of the resu l t s  obtained in the 

It is thus shown that solutions can  be obtained along any s t reamline 

based on the integral  method formulated in the present  analysis. 

culations have been obtained along seve ra l  s t reamlines ,  the suppressed 
t e r m s ,  viz. ,  -&{ 1, in Eq~. (45) ,@6)~ad (47) can  be determined, and, if these 

After cal- 
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t e r m s  a r e  not s m a l l  compared to other t e r m s  in the equations, the calcula- 

tions can be performed once more  along the s t reaml ines  until convergence is 

reached. 

type of i terative procedure has proved to be successful and reasonable 

and since the conditions in the present  examples were  r a the r  a rb i t r a r i l y  

assigned in o rde r  to  tes t  the applicability of the integral  method. 

This has not been c a r r i e d  out in  the present  analysis,  since this 
58,67s 74 

Finally, i t  i s  to be remarked  that the present  formulation should be 

extendable to the case  of dissociated flow. It will requi re  assuming a sui t -  

able form for the species profiles, and the modification of the definition of 

MI and other property t e rms .  Thus, simultaneous integration of the equa- 

tions along the s t reaml ines  should yield approximate, nonsimilar solutions 

for  the flow charac te r i s t ics ,  including the species concentrations. 

CONCLUSIONS 

An analysis of nonsimilar,  three-dimensional, compressible ,  laminar 
boundary layers  with mass  injection has been formulated by employing the 

integral  method. Comparisons were made with other analyses performed 

f o r  specialized cases  such a s  incompressible,  solid-wall, o r  sma l l  secondary 

( t ransverse)  flows, and the present  formulation was found to be in good 

agreement.  

formed for  the forebody flow on a blunt body with variable mass-injection 

ra tes .  

the s t reamline curvature  changes on the flow charac te r i s t ics ,  such as  de- 

c rease  in the shear  s t r e s s e s  and the heat t ransfer  with increase in mass  

f l u x ;  these resul ts  a r e  consistent with other,  more  specialized analyses.  

A s  a n  application of the formulation, sample solutions were per -  

The resu l t s  demonstrate significant influences of m a s s  injection and 
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APPENDIX 

From Eqs. (31) ,  (36) ,  and (38),  we have 

where 
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Then we have, 

P I  = 

P2  = 

P3 = 

P4 = 

P 5  = 

P 6  = 

P7 = 

- 
p8 

P9  = 

p1 o= 

p l l =  

l'". d7 = 0. 0756331 

= 0.015252 

S ' A  dl  = 0.187903 

= -0. 0252027 

= 0.0589253 

= -0.0083928 
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p15= n;'+ d? = 0.047619 

712, m+ d/? = 0.0075397 I' p16= 

I 

= 0.0045635 p17= m i m j d T  

a, rrl, d7 = 0. 00059524 6' p185 

I 

P20 = 1 {I - m5) j? d? = -0.0219595 

I 

p 2 1 =  W 4 n &  df = 0.0289805 

I 

P22= [ m3 & d ~  = 0.00228809 
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I 
p24 = m,fdl = -0. 00026364  

I 

p26' Wz d l  = 0. 050 

= 0 , 0 0 8 3 3 3  
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